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A multiscale method that combines continuum fluid models with the direct simu-
lation Monte Carlo (DSMC) method is presented. The continuum regions are treated
by Stokes equations and a scattered point based finite cloud method is employed
to solve the Stokes equations. The continuum and DSMC regions are combined by
an overlapped Schwarz alternating method with Dirichlet-Dirichlet type boundary
conditions. A scattered point interpolation scheme is developed to interpolate the
solution between subdomains. The convergence characteristics of the multiscale ap-
proach are investigated in detail. Specifically, the dependence of convergence on the
overlap size, the DSMC noise, and the number of time steps employed in the DSMC
algorithm are studied. While the convergence depends weakly on the DSMC noise
and the overlap size, the number of DSMC time steps simulated in each coupling
iteration should be selected so that the total time steps simulated until convergence
of the coupled process is close to the time constant of the DSMC subsystem. Steady-
state analysis of microfluidic filters is studied in detail using the multiscale approach.
The multiscale approach is also applied for the simulation of a membrane with an
array of microfluidic filters and a dual-stage microfluidic device with an array of
microfluidic filters for particle trapping and sorting.  © 2002 Elsevier Science (USA)

Key Words: multiscale analysis; DSMC; finite cloud method; meshless methods;
microfluidics.

1. INTRODUCTION

Prediction of gas flow through microfluidic devices is important to enable the design and
development of complex microelectromechanical systems (MEMS) [1-4]. Simulation of gas
flow through microfluidic devices is, however, very complicated because of the breakdown
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of continuum theories. The small dimensions encountered in microfluidic devices result in
rarefaction of the flow, which necessitates the use of molecular approaches such as a direct
simulation Monte Carlo method (DSMC). In order to model MEMS devices it is often
necessary to consider the complete flow path, including large regions where rarefaction is
not observed. At the very minimum, the input and output regions of the device need to
be simulated to avoid difficulties with far field boundary conditions. As a consequence,
for most microfluidic devices of interest, rarefaction is limited to certain critical regions
containing small length scales. The simulation of such multiscale problems by DSMC alone
is difficult, since in regions that are not rarefied, the DSMC method has low computational
efficiency. On the other hand, the use of continuum theories for the entire device can
produce inaccurate results. An efficient approach for such multiple length scale problems is
to develop a multiscale approach combining continuum theories with molecular approaches
such as molecular dynamics or DSMC [5-8]. In this paper, we investigate the application of
the alternating Schwarz method for combining continuum theories with a DSMC method
for simulation of microfluidic devices.

Even though DSMC s a versatile method and has been used extensively for the simulation
of rarefied flows [9, 10], its computational cost can be significant, limiting its usefulness.
Despite the large computational cost, the DSMC technique has been applied successfully
to simulate rarefied flows in microgeometries [10—15]. The use of DSMC alone for analysis
and design of complex microfluidic systems can be daunting because of the enormous
computational cost. Specifically, for microflow simulations, the computational cost can be
enormous when (i) the system under study has large regions with low Knudsen number
(Kn), (ii) the flow velocity is low, and (iii) when the time constant of the system is large.
Multiscale methods are attractive alternatives for simulation of microfluidic systems as
they significantly reduce the computational cost. For example, the low Kn regions can be
simulated by continuum theories effciently and accurately there by necessitating the use
of DSMC only for low velocity rarefied regions. If steady-state results are desired, then
the continuum domain can be simulated by time-independent fluid models, which require
significantly less time than solving the time-dependent fluid models. In this paper, we focus
on predicting steady-state flow characteristics in microfluidic devices by developing an
efficient multiscale approach.

Much of the work published on coupling DSMC with fluid models such as Navier—Stokes
equations was based on nonoverlapping decomposition of the simulation domain [5-7]. The
half-fluxes method [6] has been used successfully to achieve coupling in a nonoverlapping
decomposition for space vehicle reentry problems. However, the DSMC scatter in estima-
tion of higher-order moments of the distribution function presents a big difficulty for the
application of the half-fluxes method to MEMS devices, where the flow velocity is small
and correspondingly the associated scatter can be large [5]. Another technique that was
used to achieve coupling is the extrapolation of the flow properties to the interface. This
method is affected to a lesser degree from DSMC scatter. However, this method is still
critically dependent on the smoothing of the solutions obtained from DSMC and on the
accuracy of the extrapolation [5]. As compared to earlier work on coupling of DSMC with
continuum methods, the approach in the present paper considers coupling of DSMC with
time-independent continuum models using an overlapped decomposition and emphasizes
the use of Dirichlet boundary conditions in order to attain good efficiency with the cou-
pled method. In comparison to the method presented in [8], which considers coupling of
continuum methods with a molecular dynamics technique, the present paper considers the
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coupling of DSMC with fluid flow equations, presents a detailed investigation of conver-
gence characteristics, and introduces the use of scattered point methods for interpolation
between domains.

An issue with multiscale methods is the treatment of the interface between continuum and
molecular (or DSMC) regions. Mesh-based methods, such as finite element methods, can
be complicated allowing little flexibility between a finite element mesh for the continuum
and a cell structure for the molecular or the DSMC region. Scattered point methods or
meshless methods [16, 17] for the solution of the continuum equations are attractive in
a multiscale approach as they allow for an arbitrary treatment of the interface between
continuum and DSMC regions. In particular, the continuum nodes and the DSMC cells
can be placed randomly in the overlapped continuum and DSMC regions and a scattered
point interpolation technique can be used to transfer data between domains. In this work,
we use a scattered point finite cloud method (FCM) [16, 17] for the solution of the fluid
models in the continuum regions. FCM uses a fixed kernel technique for the construction of
interpolation functions and a collocation technique for the discretization of the governing
equations. A fixed kernel technique is also used to construct a scattered point interpolation
scheme between continuum and DSMC regions.

The rest of the paper is outlined as follows: In Section 2, microfluidic filters are in-
troduced. In Section 3, the multiscale method is described in detail. In Section 4.1 the
convergence properties of the coupled method are investigated, and in Section 4.2 several ex-
amples of the application of the coupled method are presented. Conclusions are presented in
Section 5.

2. MICROFLUIDIC FILTERS

Several types of microfluidic filters were reported in the literature. In [2], microfluidic
filters were developed to capture airborne particles for detailed chemical analysis. The filters
were fabricated by opening an array of holes on thin silicon membranes. The membrane
thickness was 1 um and a typical filter or hole size, determined by the minimum size of
the particles to be filtered, ranged from 5 to 10 um. Figure 1 shows the cross-sectional
images of the filters fabricated in [2]. When the filters shown in Fig. 1 were coated with a
polymer layer, a burst pressure as high as 0.25 atm was obtained. Other filter-like devices,
with much smaller hole sizes of 50 and 100 nm, were developed for immunologic isolation
applications [3]. Even though the primary application area is in liquid flows, gas flow tests
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FIG. 1. The plain-view images of some of the filters developed in [2]. Reproduced with permission from [2]
(© IEEE).
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were performed by applying a pressure difference of 1.17 atm to verify that the holes were
successfully manufactured. In much earlier work, filter-like structures that consist of small
holes on a thin membrane were fabricated by irradiation of mica membranes followed by
etching [4]. The mica membranes were 7.5 um thick, had a diameter of 11/16 inch and were
tested at 1 atm pressure difference. The pore radii varied from 2 nm to several micrometers.

Microfluidic filters are used as test beds to investigate the accuracy, efficiency, and con-
vergence characteristics of the multiscale approach described in this paper. The flow in
microfilter systems is characterized by the presence of different length scales [15]. Within
the filter channel, the characteristic length is that of the channel height, whereas outside the
channel the characteristic length is much larger. Within the filter channel and close to the
filter membrane the flow is rarefied and needs to be simulated with DSMC. However, farther
away from the channel the K7 is low and a DSMC treatment is not necessary, and the flow
can be simulated by employing an appropriate continuum model. The use of DSMC in the
low Kn regions increases the computational cost significantly. For this reason, an approach
involving the coupling of continuum models with DSMC seems optimal for microfluidic
filter applications.

3. MULTISCALE APPROACH

The multiscale approach discussed in this paper uses an overlapped Schwarz method with
Dirichlet-Dirichlet type boundary conditions for solving the steady-state flow problems
encountered in microfluidic filters. It is assumed that the validity regions for continuum and
atomistic models have already been identified. The continuum region, where continuum
models hold good, is simulated by Stokes equations using the finite cloud method, and the
atomistic region, where continuum models fail, is simulated by DSMC. It is clear that, in
general, the flow in the continuum region can show compressibility effects. Thus, the use of
Stokes equations means that a smaller region, where compressibility effects are negligible,
can be simulated by continuum models. If Navier-Stokes equations are used for continuum
simulation, a larger region can be simulated by continuum models resulting in a larger
speed-up. However, the use of Stokes equations is comparatively easier and enables the
investigation of fundamental properties of the multiscale approach.

In the following, Section 3.1 presents the finite cloud method for scattered point analysis
of Stokes equations, Section 3.2 discusses the DSMC issues that relate to the multiscale
method, and Section 3.3 presents the details of the coupling technique.

3.1. Scattered Point Analysis of Stokes Equations

A scattered point approach for analysis of Stokes equations involves two steps. The
first step is the construction of interpolation functions given a scattered set of points and
the second step is the discretization of the Stokes equations. A fixed kernel technique is
employed for the construction of interpolation functions and a collocation technique is
employed for the discretization of the Stokes equations.

In a fixed kernel technique [17] for the construction of interpolation functions, an ap-
proximation (z“) to an unknown (u) is given by

u(x) = / Clx,s)pxg — s)u(s)ds. (D
Q
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FIG. 2. A sample point distribution and the cloud defined by a kernel centered at one of the nodes is shown.

In this equation, ¢(x), is the kernel function, 2 is the computational domain, and xg
is a selected point in 2 where the kernel is centered. The cloud Q2 is defined as the
subdomain of 2 where the kernel function, centered at point K, is nonzero, i.e., Qg C Q|
¢(xg — x) # 0Vx € Qg. The discretization of the simulation domain into scattered points
and the centering of a kernel at point K to define subdomain Q2 are shown in Fig. 2. In
Eq. (1), C(x, s) is the correction function, which is defined as

C(x,s) = PT(xxg — 5)C(x). (2)

PI(x)={p1, p2, ..., pm}isthe 1 x m vector of basis function and CT(x) = {c1, ¢2, ..., i}
is the 1 x m vector of correction function coefficients. A quadratic basis in two dimensions
is given by

PT(x) =1, x, y,xz,xy, yz], m = 6. 3)

The unknown correction function coefficients, C(x), are determined by satisfying the con-
sistency conditions, i.e.,

/PT(xK =) C(xX)pxg —s)pi(s)ds =pi(x) i=1,2,...,m. @
Q

A discrete approximation of the above consistency conditions is written as

NP
ZPT(XK —x))CX)pxx —x))pi(x)AV; =pi(x) i=1,2,...,m, (5)

=1

where NP is the total number of points in the domain €2, and AV, is the nodal volume
associated with node I (see [17] for a discussion on nodal volumes). The consistency
conditions summarized in Eq. (5) can be written in a matrix form as

MC(x) = P(x), (6)
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where M is the m x m moment matrix and is a constant, i.e., it is not a function of x. In
discrete form, the entries in the moment matrix are given by

NP
M;j = Z pj(xk —xpDe(xg — x1)pi(x))AV;. 7

=1

Substituting the correction function coefficients into the discrete approximation of Eq. (1),
we obtain

NP
w'(x) = PT M POk — x)g(xx — x)us AV ®)

I=1

Equation (8) can be rewritten as

NP
u'(x) =Y Ny(xup, ©)
=1

where u; is a nodal unknown for node 7, and N; (x) is the fixed kernel interpolation function
defined as

Ni(x) = PTOM T P(xg — x))e(xg — x1)AV]. (10)

Since xg can be any point in the computational domain, the interpolation functions N, (x)
are multivalued. This issue is resolved by evaluating the interpolation function N; (x) only
at the point xx where the kernel is fixed (see [17] for complete details). The required
interpolation functions can be calculated by fixing the kernel at every point in the domain.

Finite cloud method combines collocation with the fixed kernel interpolation to achieve
a truly meshless or a scattered point solution of the governing partial differential equations.
Consider the following model problem of a system of equations with / unknown variables

Llu(x)] = f(x) inQ (11)
u=gk) onl, (12)
a_u =h(x) onlYy, (13)

an

where L is a vector of differential operators operating on the unknown vector u. In the point
collocation approach, the system of differential equations is satisfied at every node for the
approximate solution u“(x). A system of algebraic equations is obtained by satisfying the
governing equations at every point in the computational domain, i.e.,

Lilu'xpl = fitxr) xpeQi=1,...,1 (14)

ui(xp) =gilxy) xpelyi=1,...,1 (15)
ou?

YYD ) xeThi=1... 1 (16)

on
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where £; denotes the ith differential operator. #“ is approximated by meshless interpolation
given in Eq. (9).

Time-independent Stokes equations are solved assuming that the nonlinear convection
terms can be neglected. A stabilization term that modifies the continuity equation with
the divergence of the momentum equation is considered (see [16] for details). Thus, the
stabilized Stokes equations used in this study are written as

nViu—v, =0 17)

h2
v.u—7v2p=o, (18)

where p is the fluid viscosity, p is the pressure, u is the velocity vector, and /% is referred
to as the cloud size (see Fig. 2). More details on the solution of the fluid models with the
finite cloud method can be found in [16].

3.2. DSMC Analysis of Gas Flow

DSMC is a statistical method in which a number of representative particles are traced in
space and time. Using the simulated particles, the DSMC method samples the time evolution
of the distribution function of a given system. The results are computed in the form of aver-
ages over the samples obtained. The simulation domain is discretized into cells for purposes
of collision sampling and calculation of mean flow properties. Time is also discretized into
small steps T . During each time step, the particles first undergo free flight. The particles
that hit a surface during the free flight are reflected according to a selected surface model.
At the end of the time step, particle—particle collisions are sampled. Several models have
been proposed [9] to determine the collision frequency and the distribution of the velocities
after collision. We employ the variable-hard-spheres model for calculating particle cross
sections and the no-time-counter method for sampling the collisions. More details on the
implementation of the DSMC method for microfluidic filters can be found in [15].

The main steps in the DSMC algorithm are summarized in Algorithm 1. A description
of the computations performed during each time step is provided in the second column.
The algorithm is divided into two steps, showing that a number of DSMC time steps are
performed to reach steady state. After steady state is established, further DSMC time steps
are simulated to gather averages. The averages are estimated by summing the data from
each time step into an array of variables (which are defined as accumulators in Algorithm 1)
and then dividing by the number of time steps for which the data was collected. For the
enforcement of self-consistent boundary conditions, the averages are collected for Ngep
DSMC time steps, and after each such period the boundary conditions are updated as
discussed below. After the steady state is reached, the accumulators are saved to a file for
postprocessing before they are reset.

The enforcement of boundary conditions in DSMC simulations is a topic that has re-
ceived recent attention in the literature [18]. For the enforcement of boundary condi-
tions in low-velocity flows, a recent work uses extrapolation of the variables at the in-
put, and a flux corrected updating method at the output [19]. In our earlier work [15],
we found that a simple extrapolation at the output is adequate, i.e., when it is necessary
to self-consistently update the boundary conditions extrapolation of the following form
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ALGORITHM 1. Key steps in DSMC technique for steady-state simulation:

initialize DSMC particle states
initialize DSMC boundary conditions
while not converged
Simulate N, DSMC time steps.
update boundary conditions

A DSMC time step includes:

inject particles

update particle positions
implement collisions
accumulate averages

check for convergence
reset accumulators

end while

while statistical noise > limit
Simulate N, DSMC time steps.
update boundary conditions
estimate the noise in averages
save accumulators to file
reset accumulators

end while

is used:

U = U, (19)
Pi = PDc- (20)

Here, u;, p; are the interface values and u. and p. are the values obtained from the cells
neighboring the interface. For implementation of the boundary conditions a buffer zone
approach is used. Figure 3 depicts an inflow boundary with a row of buffer cells that lie
outside of the simulation domain. In the buffer cells, a Maxwellian distribution is created
at each time step with the parameters p;, u;, v; for pressure, x-velocity, and y-velocity,
respectively. The created particles are moved for one time step. The particles that remain
in the buffer cells, and those that cross into the buffer cells through I' are deleted. The
cells that lie within a given distance from the interface in the simulation domain are called
the estimation cells. For enforcing self-consistent boundary conditions, the averages from
the estimation cells, p., u., v., are extrapolated to the boundary. For the case of a coupled
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FIG. 3. Placement of buffers cells and the update cells to enforce boundary conditions in DSMC.
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simulation the values p., u., v. are passed on the continuum domain as discussed in the
next section.

3.3. Coupled Stokes/DSMC

A high-level description of the coupled Stokes/DSMC approach is shown in Algorithm 2.
Given an arbitrary initial state and a set of boundary conditions along the overlapping inter-
faces, a Schwarz technique is implemented to find a self-consistent solution to the Stokes
and the DSMC subdomains. Self-consistency is determined by a convergence check which
requires that the updates to the solution (for example, pressure and the velocities) be less
than a specified tolerance value. Self-consistency also ensures that the boundary conditions
at the interface have converged to the specified tolerance. After the convergence of the
coupling iterations, several coupling iterations between Stokes and DSMC subdomains are
performed and the DSMC results are saved to a file for a postprocessing step. The final
results in the DSMC subdomain are obtained as an average of the samples collected. As
a last step, the final results from the DSMC subdomains are used as boundary conditions

ALGORITHM 2. Description of Stokes/DSMC coupling in various overlapping Schwarz
methods.

Main loop. coupling _iteration

initialize DSMC particle states serial alternating Schwarz

initialize DSMC boundary conditions for each DSMC subdomain D; do

while coupling iterations not converged* Simulate Ny, DSMC time steps
Do coupling_iteration in D;
check for convergence end for

end while Interpolate DSMC to Stokes

Start saving accumulators Reset accumulators

while statistical noise > limit for each Stokes subdomain S; do
Do coupling __iteration Solve Stokes equations in S;
estimate the noise in averages end for

end while Interpolate Stokes to DSMC

Compute averages from saved accumulators coupling _iteration

Interpolate DSMC to Stokes colored alternating Schwarz

for each Stokes subdomain S; do Make Ny, time steps in all D;
Solve Stokes equations in S; Interpolate DSMC to Stokes

end for Reset accumulators

Solve Stokes in all §;
Interpolate Stokes to DSMC
coupling _iteration:

* Convergence requires the convergence parallel alternating Schwarz

of the coupling iterations. Make Ny, time steps in all D;
Solve Stokes in all §;
Interpolate DSMC to Stokes
Reset accumulators
Interpolate Stokes to DSMC
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Qq

FIG. 4. Decomposition of a sample geometry into two overlapping subdomains.

to find the solution in the continuum subdomains. It needs to be noted that an imporatant
property of this method is that the DSMC noise in the estimates interpolated to the continuum
subdomain at each coupling iteration is larger than the DSMC noise in the final result, which
is an average over a number of coupling iterations. The interpolation of the final result to the
continuum subdomains and a solution of the continuum equations are performed to obtain
the continuum solutions using these low noise boundary conditions.

3.3.1. Schwarz Technique

A Schwarz technique is employed to solve the coupled Stokes/DSMC problem on over-
lapping subdomains. To understand the Schwarz technique, consider two overlapping sub-
domains as shown in Fig. 4. An alternating Schwarz method for the subdomains shown in
Fig. 4 can be summarized as follows:

Begin n=0; M(20>|[‘] = initial condition

Repeat :{ n=n+1
Solve Lu\” = fin @, with BCu\” = u""" on T,
Solve Lu$” = f, in Q, with BC u{” = u\" on T’

} until convergence

where n is the iteration number, uf”) is the solution in domain £2; at iteration n, L is
the partial differential operator describing the governing equations, and f; are forcing
functions of position in domain €2;. In the alternating Schwarz method, the subdomains are
overlapped and Dirichlet type boundary conditions are employed. The alternating Schwarz
method can be modified to use nonoverlapping domains and Neumann type boundary
conditions. Several variations of the basic Schwarz technique are explained in [20]. For
example, previous work on coupling time-dependent Navier—Stokes with DSMC employed
a nonoverlapped Schwarz coupling method with Robin (mixed) type boundary conditions
[6]. In this work, we employ only Dirichlet-Dirichlet type boundary conditions to avoid
estimating derivatives of flow quantities.

The alternating Schwarz method as described above is a serial technique. In Algorithm 2,
the serial alternating Schwarz method and two parallel implementations of the Schwarz
technique for coupling Stokes and DSMC subdomains are shown. To understand the im-
plementation of various Schwarz techniques, consider the geometry and its decomposition
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Sy D, S, D,

FIG.5. Decomposition of a sample geometry into four subdomains.

shown in Fig. 5. S; denotes the Stokes subdomain and D; denotes the DSMC subdomain.
In the serial alternating Schwarz method, each subdomain is solved sequentially, i.e., Si,
followed by D, followed by S, and so on. In a colored Schwarz method the subdomains
are divided into groups (i.e., colored) and the subdomains in each group are solved con-
currently, while each group is solved sequentially. The optimal coloring depends on the
geometry and its decomposition. For example, for the subdomains shown in Fig. 5, all the
D;’s are assigned one color and all the S;’s are assigned a different color. All the D;’s are
solved at once, followed by the solution of all the S;’s. In a parallel alternating Schwarz
method, all the subdomains are solved at once, i.e., the subdomains Sy, S,, D, D, are all
solved concurrently. In this paper, we primarily investigate the colored Schwarz method for
microfilter analysis. However, for one of the examples considered in this paper, we compare
the convergence characteristics of the colored and the parallel Schwarz methods.

For the operation of microfluidic filters under pressure gradients, it is important to
impose proper boundary conditions at interfaces to avoid convergence problems. In or-
der to simulate pressure driven flows, pressure must be exchanged between the subdomains
at least in one direction. The stability of the coupled method for pressure driven flows is
analyzed in the Appendix. It is shown that stability depends on the geometry of the prob-
lem and the choice of the boundary conditions transferred to the Stokes subdomain. For
the microfluidic filter example considered in this work, either pressure or velocity can be
transferred as a boundary condition from the DSMC subdomain to the Stokes subdomain.
Because of the stability concerns associated with transfering a pressure boundary condition
to the Stokes subdomain, we transfer velocity as a boundary condition from DSMC to the
Stokes subdomain. Both pressure and velocity are transferred as boundary conditions from
the Stokes subdomain to the DSMC subdomain.

3.3.2. Interpolation between Domains

In general, the position of the continuum nodes and the DSMC particles do not match in
the overlapped regions. When a solution is computed in the DSMC subdomain, the solution
for the continuum nodes in the DSMC subdomain can be obtained by using an interpolation
scheme. This interpolation scheme is referred to as the DSMC to continuum interpolation.
Similary, when a solution in the Stokes subdomain is computed, the solution for the DSMC
particles (or DSMC cell centers) in the Stokes subdomain can again be computed by an
interpolation scheme. This interpolation scheme will be referred to as the continuum to
DSMC interpolation. Both continuum to DSMC and DSMC to continuum interpolation
schemes are implemented by using the scattered point interpolation technique described in
Section 3.1.
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FIG. 6. Placement of the kernel and the definition of the cloud for DSMC to continuum interpolation.

DSMC to continuum interpolation. Denote by c¢; the DSMC cells that will be used
to compute the solution at the continuum boundary nodes n;. Let x.; denote the position
of the DSMC cell center and x,; denote the position of a continuum boundary node at
which the solution needs to be interpolated. Let u.; denote the nodal parameters for the
solution at the DSMC cell centers (the solution that needs to be interpolated can be pressure,
velocity, etc.) and u(x,;) be the interpolated solution at the continuum boundary node 7.
To compute u(x,;), a kernel or a weighting function is first centered at the position x,;.
The kernel centered at x,; defines the cloud €2; and the number of DSMC cell centers,
NC, that lie within the cloud €2; (see Fig. 6 for the definition of the cloud and the cells
that fall within the cloud). When the kernel is centered at x,;, the interpolation functions,
Ni(x,;),i =1,2,...,NC, are computed. Once the interpolation functions are computed,
u(x,;) is computed by

NC

() =3 Ni(xnj)uei. 1)

i=1

Continuum to DSMC interpolation. Let n; denote the nodes in the continuum domain
and c; denote the DSMC cells. Let x,,; and x.; denote the position of the continuum nodes
and the DSMC cells, respectively. Let u,; denote the nodal parameter for the solution at the
continuum node with location x,; and u(x;) be the interpolated solution at the DSMC cell
center with location x.;. To compute u (x.;) akernel or a weighting function is centered at the
position x.;. The kernel centered at x.; defines the cloud £2; and the number of continuum
nodes, NP, that lie within the cloud €2; (see Fig. 7 for the definition of the cloud and
the continuum nodes that fall within the cloud). When the kernel is centered at x.;, the
interpolation functions, N;(x;),i = 1,2, ..., NP, are computed. Once the interpolation
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FIG.7. Placement of the kernel and the definition of the cloud for continuum to DSMC interpolation.

functions are computed, u(x,;) is computed by

u

NP,

() = Niej i

i=1

4. RESULTS

(22)

The multiscale or the coupled DSMC/Stokes approach described in the previous sections
is applied to the microfilter geometry shown in Fig. 8. Two filters with different dimensions
are considered: For both filters 4 =5 um, . =1 pum is used. The first filter has a smaller

-
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FIG.8. The geometry of the microfilter device. Also shown in the figure are the Stokes and DSMC subdomains

and the overlap between the two subdomains.
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TABLE I
A Summary of Boundary Conditions on Various Surfaces
of the Microfilter Geometry

Pressure x-velocity y-velocity
Surface A 1.3 atm — 0
Surface B 1.0 atm — 0
Surface C, E aP/dy =0 0 dv,/dy =0
Surface D, F aP/dy =0 0 dv,/dy =0
Surface Si, So — v, = DSMC estimate —
Surface Di, Do p = Stokes solution v, = Stokes solution® v, = Stokes solution”
Surface G, H —_ diffusive diffusive

“v, and v, are not imposed as boundary conditions, but rather used to set the mean
velocities of particles crossing into the DSMC subdomain from the buffer cells.

filter height of 7, =0.2 um, and the second has a filter height of 4. =0.8 pum. For the
filter with 2. =0.2 um, [;, =7 pum and /,,,, = 7 ;um is used. For the filter with 7. = 0.8 um,
liy==6 pum and /,,, =8 um is used. Figure 8 also shows the decomposition of the filter
geometry into Stokes and DSMC subdomains. The extension of the DSMC subdomain on
each side of the channel is denoted by d.x. Observe that for this example, we have one DSMC
subdomain and two Stokes subdomains. In order to make sure that the flow is approximately
incompressible at the interface, dexy =2 pum and deyy =3 um are used for 7, =0.2 and
h,=0.8 um, respectively. The overlap between DSMC and the Stokes subdomains is
denoted by d,y. The overlap is measured from the center of the DSMC estimation cells to
the continuum nodes, i.e., the generation cells are not counted in the overlap as these cells
do not have valid data that can be used. An identical overlap distance, dy, is used for both
the input and the output regions. The initial state and the boundary conditions for the DSMC
subdomain are selected far away from the expected steady state solution in order to test
the convergence characteristics of the coupled approach. The boundary conditions imposed
on various surfaces of the microfilter geometry are listed in Table I. The initial pressure is
set to 5.0 atm and the initial velocity is set to 0 m/s for the DSMC subdomain. For all the
simulations reported in this paper, a DSMC time step of 10 ps is used.

To test the accuracy of the coupled DSMC/Stokes method, the geometry shown in Figure 8
is simulated by DSMC only (which will serve as the exact solution) and by the coupled
approach for two different values of 4, = 0.2 um and 4, =0.8 um. For the DSMC only
simulation and for the DSMC subdomain of the coupled approach, the same cells sizes
are used. The cell size is set to be 20 nm for the input and output regions and 10 nm
for the channel. For the filter with 4, =0.2 um, the number of particles per cell at the
input region is about 38, whereas for the filter with 7. =0.8 um, this number is about
19. Ngep = 5000 is used for the coupled analysis. Ten coupling interations were performed
before the averaging process was started. This corresponds to a total 50e3 DSMC time steps,
which in turn is 0.5 us of simulated time. After the convergence of the coupled process, the
averages were collected for 1 us, which corresponds to 100e3 DMSC time steps. For the
DSMC simulations, the averaging was started after 1.5 us was simulated and the averages
were collected for 1 us. Note that 1.5 us of simulated transient may have been longer
than the minimum necessary. The CPU time for the DSMC simulation of the filter with
h,=0.2 um and i, =0.8 um are 1340 and 640 hours, respectively.



356 AKTAS AND ALURU

5 pressure
195510 , ‘
—— coupled
—— DSMC
1.3 1
1.25 .
= 1.2 .
L)
e
21.15 |
w
g
=8
1.1 1
1.05 1
4 . W - rrner
0 0.5 - 1 1.5
position (m) x 1078

FIG.9. Comparison of pressure along the midline of the channel obtained from the DSMC only and coupled
simulations (2. =0.2 um, d,, =0 pm).

The results for the two filters are shown in Figs. 9-13 with an overlap of zero, i.e.,
doy =0. Figures 9 and 10 compare the pressure and the x-velocity, respectively, obtained
with the DSMC and the coupled simulations for 4. =0.2 um. Figures 11 and 12 compare
the pressure and the x-velocity, respectively, obtained with the DSMC and the coupled

x-velocity
20 T :

— coupled
DSMC |

18

—
na

x-velocity (m/s)
=)

0 0.5 1 1.5
position (m) x10°°

FIG.10. Comparison of velocity along the midline of the channel obtained from the DSMC only and coupled
simulations (4. =0.2 um, d,, =0 pum).
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FIG.11. Comparison of pressure along the midline of the channel obtained from the DSMC only and coupled
simulations (4. =0.8 um, d,, =0 pum).

simulations for 4. = 0.8 um. We observe that for both filter heights, the coupled simulations
are in good agreement with the DSMC results. The good agreement between the two
methods establishes the accuracy of the coupled method. From the results, we can also
conclude that the multiscale approach presented in this paper achieves proper coupling
between the DSMC and the Stokes subdomains. Figure 13 shows the x-velocity along the

x-velocity
100 T T

—— coupled
90 DSMC

x-velocity (m/s)

" : .
%

05 - 1 15
position (m) x10°

FIG.12. Comparison of velocity along the midline of the channel obtained from the DSMC only and coupled
simulations (k. =0.8 um, d,, =0 pm).
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FIG. 13. Comparison of coupled and DSMC results for x-velocity along the DSMC/Stokes interface (h, =
0.2 um, d,, =0 pum). The high pressure side is the interface at x =3.05 um, and the low pressure side is the
interface at x =9.95 pum.

DSMC/Stokes interface for the filter with 4, = 0.8 um. From this figure, it is seen that
the coupling between the Stokes and the DSMC subdomains is two-dimensional as the
x-velocity exhibits significant variation in the direction perpendicular to the flow.

To characterize the efficiency of the coupled approach, we introduce an ideal speed-up
factor S, which is defined as

_ Nt(DSMC) Np(DSMC)
Nt (coupled) Np(coupled)’

(23)

where N¢#(DSMC) and Nt(coupled) are the total number of time steps simulated for the
DSMC simulation and the coupled simulation, respectively. Similarly, Np(DSMC) and
N p(coupled) are the total number of particles for the DSMC simulation and the coupled
simulation, respectively. This definition ignores the overhead (e.g., continuum to DSMC
and DSMC to continuum interpolations) associated with the coupling procedure as well as
the time required to solve the continuum Stokes equations. Thus, the ideal speed-up defined
above could be unrealistic and may never be attained by the coupled approach. However, on
parallel computers, it is possible to get larger than ideal speed-ups because of the memory
usage. For example, a smaller memory usage can enhance performance because of the
reduction in the ratio of cache misses to hits. Thus, if the overhead associated with the
coupled approach as well as the time spent in solving the continuum equations is small,
then it is possible to get near ideal speed-ups because of performance gains attained on
parallel computers. The speed-up factors reported in this paper should be understood in
proper context by considering the above remarks.

The performance of the coupled method is measured by comparing the CPU times re-
quired by the DSMC and by the coupled approach. In order to simplify the comparison,
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both simulations were run for the same number of DSMC time steps (i.e., Nt(DSMC) =
Nt(coupled)). Speed-up comparisons were performed for both the smaller filter (k. =
0.2 um) and for the bigger filter (A, = 0.8 wm). The ideal speed-up factors for the smaller
and the bigger filters are 3.25 and 2.18, respectively. These speed-ups are computed by
assuming N¢(DSMC) = Nt (coupled). The observed speed-ups for the two filters are 3.2
and 2.17, respectively, demonstrating an efficiency greater than 99%.

4.1. Effect of Various Parameters on Convergence

An important property to investigate of the multiscale approach is its convergence behav-
ior. The dependence of the convergence on various parameters contained in the multiscale
approach needs to be understood to guarantee the convergence of the multiscale approach.
In this paper, we report on the dependence of the convergence characteristics on the overlap
size, doy, the DSMC particle weight, w,, and the number of DSMC time steps between
coupling iterations, Nyep. The details on each of each these studies is described below.

4.1.1. Overlap Size

The overlap size in Fig. 8, d,y, describes the overlap between the Stokes and the DSMC
subdomains i.e., both DSMC and Stokes equations are solved in the overlap region. The
dependence of the convergence on the overlap is investigated by considering various overlap
sizes: doy =0.6, 0.4, 0.2, 0.0 um. The overlap is increased or decreased by adjusting the
distance d.x; (see Fig. 8). The implementation of the interface boundary conditions for the
doy = 0.0 pum case is not different from the other d,, cases.

The convergence results are summarized in Figs. 14 to 16. Figures 14 and 15 show
the convergence of the pressure and the velocity boundary conditions, respectively, at the

1o B L : . : :
Wk
w
e
o 10, ..... -
=
[42]
[a]
c
=]
@]
ni]
g
g
o —-— dov=0.0um
d_=0.4um
ov
: : e dov=0'6“m
0 5 10 15 20 25 30

Number of coupling iterations

FIG. 14. Convergence of pressure boundary condition transferred from the continuum side to the DSMC
subdomain for different overlaps. Ny, = 5000 is used.
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FIG. 15. Convergence of velocity boundary condition transferred from the continuum side to the DSMC
subdomain for different overlaps. Ny, = 5000 is used.

input section. The pressure boundary condition in Fig. 14 is plotted by computing the
average of the boundary condition imposed on all the buffer cells. The velocity boundary
condition in Fig. 15 is plotted by taking the value from the buffer cell at /2 ; /2. The results
in Figs. 14 and 15 indicate that the convergence is weakly dependent on the overlap size
for this problem, with larger overlap size exhibiting slightly better convergence. In order to
further investigate the dependence of the convergence characteristics on the overlap size,
we show the absolute error in the pressure boundary condition transferred from the Stokes
subdomain to the DSMC subdomain in Fig. 16. The absolute error is defined as the absolute
deviation between the computed value and an exact value, which is determined from the
DSMC only simulation. Again, the values plotted are the average of all the DSMC buffer
cells. The results in Fig. 16 were obtained for Ngep, = 5000. The results in Fig. 16 show
that the number of iterations until convergence is weakly dependent on the overlap size. A
mathematical analysis of the Schwarz method reveals that a faster convergence should be
obtained for a larger overlap [20]. However, the result in Fig. 16 indicates clearly that the
number of coupling iterations is only weakly dependent on the overlap size. The observed
behaviour leads to the conclusion that the Stokes and the DSMC subdomains are weakly
coupled.

4.1.2. Particle Weight

In statistical approaches, such as DSMC, noise in the solution is a typical characteristic
and should be given careful consideration. For example, the presence of noise in the DSMC
solution can create a variety of problems to the convergence of the multiscale approach.
The noise in the DSMC estimates can be controlled by decreasing the particle weight or by
increasing the number of DSMC time steps. To evaluate the dependence of convergence on
the particle weight, w,, simulations are performed using particle weights of 25e4, 5e4, 1e4,
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FIG.16. The absolute error in the pressure boundary condition transferred from the continuum subdomain to
the DSMC subdomain for different overlaps. Ny, = 5000 is used.

and le3. The absolute error is plotted on a logarithmic scale in Fig. 17. The result in Fig. 17
indicates that a smaller particle weight accounts for more number of particles and exhibits
better convergence characteristics with less noise. Since the convergence is not delayed
significantly because of a larger noise (due to a larger particle weight), we can conclude
that the method is fairly robust. The observation that the coupled method converges when
using a large particle weight is important for application of the particle cloning method [21]
to speed up the DSMC simulation. The particle weight that should be selected according
to the DSMC accuracy requirements is 1e3. However, a lower weight requires extensive
CPU times and the simulation time can be reduced by using a particle cloning method that
starts with 16 times the desired weight of 1e3 and using four cloning steps to get the desired
accuracy.

4.1.3. Number of Time Steps in DSMC

The selection of the number of DSMC time steps, Ngp, during each coupling iteration
is important for the efficiency of the coupled method. Two issues need to be considered
when selecting Np. The first issue deals with the noise in the DSMC solution. The noise
considerations that were discussed in connection with the particle weight also apply for
the selection of Nip. In the simulations reported here, the particle weight, w,, is reduced
proportionally as Np is decreased. The second issue that needs to be considered in selecting
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FIG. 17. The absolute error in the pressure boundary condition transferred from the continuum subdomain to
the DSMC subdomain for different values of w),. Ny, = 1000 is used.

Nyiep is the time-dependent nature of the DSMC solution computed during the coupling
iterations. Starting from an initial state, the multiscale coupled algorithm will take a certain
number of iterations to compute a converged solution. During each iteration, the flow in
the DSMC subdomain will evolve in a time-accurate manner toward a steady-state solution
determined by the boundary conditions. If Ny, is large enough during each coupling
iteration, a steady-state solution can be reached. However, there is no need to compute
steady-state solution during each coupling iteration as the boundary conditions enforced on
the DSMC subdomain are not necessarily steady-state boundary conditions. Since the goal
is to compute a steady-state solution for the entire system (including both Stokes and DSMC
subdomains), Ngep can be selected shorter and the boundary conditions can be updated in
an iterative manner until a steady-state solution is reached.

To investigate the effect of Nep, the filter geometry is simulated by keeping Ngep/w,
constant as Ngep is changed. This keeps the noise in the DSMC estimates at the same
level. Ny, values of 200, 1000, 5000, and 25000 are investigated. The convergence of
the pressure boundary condition in the input section is plotted against the number of
iterations in Fig. 18. It can be observed that for N, =200 and 1000, a larger number
of coupling iterations are needed for convergence when compared to Ny, =5000 and
25,000. A comparison of the total simulated DSMC time steps until convergence shows
that for Ny, =200 and 1000, the total DSMC time steps are approximately equal. However,
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FIG. 18. The absolute error in the pressure boundary condition transferred from the continuum subdomain to
the DSMC subdomain for different values of Ny, and w,. w, is changed to keep the noise level approximately
the same.

for the other two cases, the DSMC time steps until convergence are much larger. Thus, we
can conclude that, if Ngep * Nepi (Where Nep is the number of coupling iterations until
convergence) is longer than the number of time steps the DSMC subdomain takes to steady
state, convergence is determined by the properties of the coupling method, where as if
Ntep * Nepi is smaller then the DSMC subdomain will evolve in a quasi-static manner and
the number of coupling iterations until convergence, N1, will be increased. For an efficient
implementation, Nyep * Nepi should be close to the time constant of the DSMC subdomain.

4.1.4. Comparison of Colored and Parallel Schwarz Methods

All the results shown in the previous sections were obtained by using a colored Schwarz
method, where the DSMC and Stokes subdomains are solved alternatively as described in
algorithm 2. The colored Schwarz method is a reasonably good solution scheme for the
examples considered in this paper as the solution of the Stokes subdomain takes relatively
much shorter time compared to the solution of the DSMC subdomain. However, for more
complicated flows, where the solution of the continuum region can be quite involved, the
sequential solution of the continuum and the DSMC subdomains can be inefficient. In such
cases, a parallel Schwarz method, where both the continuum and the DSMC subdomains
are solved simultaneously, is an attractive approach.
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FIG.19. The absolute error in the pressure boundary condition transferred from the continuum subdomain to
the DSMC subdomain for different overlaps. The parallel Schwarz method is employed and N, = 5000 is used.

The convergence of the colored Schwarz method for different overlap sizes was al-
ready discussed in Fig. 16. The convergence of the parallel Schwarz method for different
overlap sizes is shown in Fig. 19. The results indicate that the parallel and colored coupling
techniques exhibit similar convergence characteristics. The convergence is again weakly
dependent on the overlap size. Thus, for filter simulations, the use of either colored Schwarz
or a parallel Schwarz approach produces good efficiency.

4.2. Application of the Method
4.2.1. Filter Element with Random Point Distribution

The multiscale approach described in this paper allows for flexibility in the treatment
of the interface between the Stokes and the DSMC domains. In particular, the continuum
domain can be simulated by a random distribution of points and the continuum points
don’t need to match with the DSMC cells. As discussed in Section 3.3.2, the solution
from one subdomain can be interpolated to the other subdomain by using a scattered point
interpolation technique. To demonstrate the flexibility of the method, the microfilter element
is simulated by using a random distribution of points for the Stokes domain. The filter
element along with the point distribution is shown in Fig. 20. The filter is again simulated
by using the colored Schwarz method and by employing elliptical and circular clouds for
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FIG. 20. Microfilter element with a random distribution of points for the Stokes subdomains.

cell-to-node and node-to-cell interpolation, respectively. Simulation results for pressure and
x-velocity are plotted along the midline of the channel in Figs. 21 and 22, respectively. Also
shown in the figures is the comparison to the DSMC only solution. The good match observed
between the two solutions demonstrates the robustness and flexibility of the multiscale
approach.

4.2.2. Filter Array

The development of a multiscale approach enables simulation of complex microfluidic
devices and systems. To further demonstrate the multiscale approach, we consider a mi-
crofluidic filter array. The geometry of the simulated microfilter array is shown in Fig. 23.
The array consists of a 0.5-um membrane with 60 0.02-um filter channels. The spacing
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FIG.21. Comparison of pressure, along the midline of the channel, obtained from the DSMC only simulation
and the coupled simulation with a random point distribution in the Stokes subdomains (4. = 0.8 um, d,, =0 pm).
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FIG.22. Comparison of velocity, along the midline of the channel, obtained from the DSMC only simulation
and the coupled simulation with a random point distribution in the Stokes subdomains (4. = 0.8 um, d,, =0 p©m).

between the filters is 0.05 um. The structure of each filter in the filter array is similar to
the geometry considered in Fig. 8. Within each filter channel and in the vicinity of the
filter, continuum theories breakdown and necessitate the use of DSMC. The use of DSMC
to simulate the entire device can be computationally very intensive. Hence, in the regions
where continuum theories breakdown, we employ DSMC and the rest of the device is simu-
lated by using Stokes equations. Specifically, the DSMC subdomain includes the membrane
and 1 um on either side. The simulated pressure and the x-velocity for the filter array are
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FIG. 23. The geometry of the filter array. 60 filters, each of 0.02 um high and 1 um long are considered.
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FIG. 24. Pressure (Pa) versus position (m) computed with the coupled approach for the filter array example.

shown in Figs. 24 and 25, respectively. These results again demonstrate the effectiveness
of the multiscale approach. Fig. 26 plots the x-velocity at the DSMC/Stokes interface at
the low-pressure side, which shows again that the coupling between the Stokes and the
DSMC subdomains is two-dimensional as the x-velocity exhibits significant variation in
the direction perpendicular to the flow.

8x10 _—
L Jas
7 L dao
- 43S
6

0 0.5 1 1.5
x10°

FIG.25. x-velocity (m/s) versus position (m) computed with the coupled approach for the filter array example.
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FIG. 26. x-velocity versus position at the DSMC/Stokes interface of the low pressure side, defined by x =
7.5 pm.

4.2.3. Dual-Stage Filter

A dual-stage filter is simulated by the coupled method to demonstrate the effective-
ness of the method in handling multiple subdomains. The filter structure shown in Fig. 25 is
decomposed into two DSMC subdomains and three Stokes subdomains. For accurate analy-
sis, the second continuum domain needs to be simulated by a compressible solver. However,
the second continuum subdomain is also modeled by an incompressible solver as the objec-
tive is to demonstrate the coupling of multiple subdomains. The coupling of a compressible
solver with DSMC will be reported in a future publication.

Each filter stage comprises a filter array, similar to the one considered in section 4.2.2.
Both filter arrays have a membrane thickness of /. = 0.5 yum and a total heightof 4y =5 pum.
The first stage consists of six filter channels with £, =0.3 um and 0.5 pum separation
between filters. The second stage consists of 15 filter channels with 7, =0.1 um and 0.2 um
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FIG.27. The geometry of the dual-stage filter.
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FIG. 28. The velocity and pressure at the first level filter plotted along y = 0.25 pm, which is the centerline
for a filter in the first level.

separation between filters. The filter channels are placed symmetrically around the channel
axis starting from the center. The first filter membrane was placed at x =207 pm, and the
second atx = 907 um. The decomposition of the geometry into various subdomains is shown
in Fig. 27. For the DSMC subdomains, dext] = dexp = dext3 = 1 um and dex3 = 3 um is used.
The Stokes subdomains have lengths of /i, = 10 um, /g =698 um, and /oy = 10 pm.

Since there is no filter channel at the midline (y = 0.0 um), in Figs. 28 and 29 the results
for pressure and velocity from the coupled procedure are shown along lines that pass through
filter channels close to the midline. For the first filter stage, y = 0.25 um defines a centerline
of a filter. For the second filter stage, y =0.25 um does not define a conterline of a filter, so
y =0.3 umis selected. The results in Fig. 28 are plotted along y = 0.25 um, and the results
in Fig. 29 are plotted along y = 0.3 um. The ideal speed-up factor for this filter is around
150, and the actual value obtained is about 100. The reduction in efficiency is in part due
to the large solution time associated with the Stokes domain in the middle. A full DSMC
simulation of the dual stage filter is extremely costly due to the very large volume, the
very low velocity in the connecting channels, and the very long time constant. Multiscale
methods prove efficient for such problems.
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FIG.29. The velocity and pressure at the second level filter plotted along y = 0.3 um, which is the centerline
for a filter in the second level.
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5. CONCLUSIONS

A multiscale approach combining continuum Stokes equations with the direct simula-
tion Monte Carlo (DSMC) methods is presented for analysis of microfluidic devices. The
continuum Stokes equations are solved by a scattered point based finite cloud method. The
multiscale method is based on an overlapped Schwarz technique with Dirichlet—Dirichlet
type boundary conditions. The use of Dirichlet boundary conditions avoids the calculation
of fluxes and results in an increased efficiency. Within the overlapped Stokes and the DSMC
subdomains, the solution is interpolated from one subdomain to the other subdomain by
using scattered point interpolation.

The multiscale method was applied for steady-state analysis of microfluidic filters. The
convergence characteristics of the multiscale approach were investigated in detail. In par-
ticular, the dependence of convergence on the overlap size, DSMC noise, and the number
of time steps considered in DSMC were investigated. The results showed that good conver-
gence is obtained even for noisy DSMC data and short averaging times. The convergence
was found to be weakly dependent on the overlap size. Finally, using the multiscale method,
simulation results are also presented for a microfilter array and a dual-stage microfilter array.

APPENDIX: STABILITY OF THE COUPLED METHOD

The stability and convergence of the Schwarz method has been proven for a range of flow
conditions [22]. However, for pressure driven flows the stability of the method can be an
issue. Since pressure driven flows are of interest for microfluidic filters, the stability of the
coupled method is investigated using a model problem of a 2D channel flow. For simplicity,
the flow is assumed to be incompressible. The geometry under consideration is shown in
Fig. 30. The channel is decomposed into two subdomains—the first subdomain is of length
L, and the second subdomain is of length L;,. The overlap length is L,. The pressure,
velocity and the slope of the pressure in the first and second subdomains are denoted by P,,
Va, Dy and Py, V), Dy, respectively.

For an incompressible flow, the slope of the pressure in the channel is given by D =
(Pin — Pout) /L, where Pi,, Poy, and L are the input pressure, output pressure, and the length
of the channel, respectively. The flow velocity at the midline is constant and is given by

1 _h?

V=—D—,
2u 4

(24)

where w is the fluid viscosity, D is the slope of the pressure in the channel, and 4 is the
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in out
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FIG. 30. A channel geometry with overlapped subdomains for the stability analysis of pressure driven flows.
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channel height. For the stability analysis discussed below, we express V = AD, where
A=1/Buw.

A single iteration of an overlapped Schwarz method is considered. At iteration n — 1,
the channel is assumed to be at rest, with P, = Py = p,, and v =0, and a disturbance in
the pressure is introduced at P,(I";). Consider the case where the coupling is achieved by
interpolating the pressure from €2, to €2, and interpolating the velocity from €,
to Qp:

Py (L) = p, + 8p" (25)
n n Lh - Lo
P} (Ty) = (P} (I'y) — PO)T + Po (26)
n n n Lb - Lo
PI(T0) = PY(T) = 89"~ 2= + p, 27)
Po — Pn(ra) Lh - Lo
D' — a I Y 28
a L. P oL, (28)
L,—L,
V" =AD" = A(—Sp")ZT (29)
bLa
vt =y (30)
Vil+1 Lb _ L
Dn+1 ) — (=8p" o 31
b A (=ép )7LbLa 3D
n+l n+1 n Ly—-L,
P/ (Ty) =Dy Ly + p, = (=ép )TLb + Po (32)
blia
L,—L
8y = (=oph =" (33)

Lq

For the coupled implementation, where the pressure is transferred as a boundary condition
from subdomain €2, to subdomain €2, and velocity is transferred as a boundary condition
from 2, to 2, if L, — L, > L, the initial disturbance will grow at each iteration and the
coupled method will be unstable. However, the coupled implementation will be stable if
the variables are passed the other way around, i.e., pressure is transferred as a boundary
condition from subdomain €2, to subdomain €2, and velocity is transferred as a boundary
condition from €2, to 2,. Hence, for pressure driven flows care should be exercised in
enforcing interface boundary conditions for the coupled approach.
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